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Abstract. By introducing a new spin-Bose transformation which incorporates the single-site
spin-states mixing effect self-consistently, we establish a unified spin-wave approach, applicable
to an arbitrary spin-number case and general spin configurations, for quantum spin systems with
single-ion anisotropies. The conventional Holstein—Primakoff (HP) metiootbletely failfor

such systems with easy-plane anisotropy sohetimes failfor those with easy-axis anisotropy,
while these difficulties have been overcome successfully by the new method. In some limiting cases,
the present method recovers the results of old theories which are valid in such cases. Applications
to magnetic multilayers show that the new method is useful to remove the unphysical instability
predicted by the conventional HP method.

1. Introduction

The single-ion termD(S7)? is the most widely adopted form in quantum spin models to
describe the anisotropies in magnetic systems [1-7]. When 0, thez axis is a magnetic

easy axis, otherwise they plane turns to become an easy plane. The conventional treatment
for such a system is straightforwardt—one first introduces a local coordinate (LC) system,
then one determines the spin configuration via the variation method, and finally one obtains
spin-wave spectra with the help of the Holstein—Primakoff (HP) transformation [8]. Such
an approach, denoted by the conventional HP method, has been applied to various magnetic
systems with single-ion anisotropies, for example, randomly anisotropic magnets [3], magnetic
multilayers [4—7], etc. However, the conventional HP method is not always successful. First,
it completelyfails for a magnetic system with any ‘easy-plane’ anisotropy. When using this
approach to study even the simplest easy-plane model, one may find that: whenever the
magnetized direction is different from the anisotropic axis, the excitation energies of some
modes turn out to be imaginary. Second, even for the easy-axis model, the conventional HP
method isnot alwaysvalid. In some cases, for example when an external field forces the spin
to rotate from its easy axis to its hard axis, the same problem arises.

Generally, these problems are induced by neglecting a very important quantum effect—
the single-site spin-states mixing (SSM) effect. After the LC transformation, off-diagonal
interactions((S*)? + (S7)?) may appear in the Hamiltonian. Such terms have a tendency to
mix the single-site spin statgs with |n +2) etc to form the proper eigenstates. However, such
an effect was completely neglected by the conventional HP method [2]. Several methods have
already been developed to solve these problems, such as the matching of the matrix elements
(MME) method [9-11], the characteristic angle (CA) method [12-14], and a numerical

T Areview of the conventional method is decribed in [2].
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method [15]. Unfortunately, all of them have limitations. The MME method is a perturbative
one, so that it can only be applied to small anisotropy cases; furthermore, it cannot combine
with the LC transformation to deal with general spin configurations [9-11]. Although the CA
method has been combined successfully with the LC transformation, it can only be applied to
spin-1 systems [12—-14]. The numerical method is limited in spin-1 systems [15]. Thus, to our
knowledge, a satisfactory theory for quantum spin systems with single-ion anisotropy remains
a great challenge to theoretical researchers.

In the present paper, we propose a unified spin-wave approach, which is applicable to
arbitrary spin-number systems and general spin configurations, for quantum spin systems with
single-ion anisotropies. The key point of this method is a new set of spin-Bose transformations
which is different from the HP one and incorporates the SSM effect automatically. This paperis
organized as follows: first we outline the theoretical formalism based on a homogeneous easy-
plane model in the next section; we then compare the present method with existing theories
in section 3. Section 4 is devoted to the applications to magnetic multilayers. Finally, the
conclusions are summarized in the last section.

2. Theoretical formalism

2.1. The Hamiltonian

Let us illuminate the basic ideas of the new method based on the simplest case—a bulk easy-
plane ferromagnet in an external field. The Hamiltonian is given by

H=-JY 8;-S;+D) ($)*—h)_ S )
(i) i i

where the exchange interactions are within nearest neighhbussthe anisotropy constant,

andh is the external field. Considering the competition between the anisotropy and the external

field, it is helpful to introduce the LC transformation [2]:

7 = cosfS7 — sing Sy s =8 SF =cosgSy +sings? (2
to optimize the magnetization direction. After the transformation, the Hamiltonian becomes
H=-J) 5-8+Dcogdy (5)°+Dsinfo Y ($)?—hcosd Y S

()] i
—Dsing cosd Y (787 +S7S7) +hsing Y Sy 3)

Itis clear that except = 0, there is a single-site off-diagonal tel(n's‘}”/)2 in the Hamiltonian
(3) which contributes the SSM effect.

In the standard spin-wave theory, one usually applies a spin-Bose transformation to the
Hamiltonian and then tries to solve the Boson system. If the resulting Boson Hamiltonian can
be exactlysolved, it does not matter what kind of spin-Bose transformation has been applied.
However, an exact solution is unfortunately hard to obtain, so that usually some approximations
(for example, the harmonic approximation) are necessary. Such approximations assume that
high-order Boson terms are relatively unimportant to determine the ground state and the low-
lying spin waves, so that only low-order terms are retained. However, this assumption is
correctonly if the (local) Boson representation has been chosen in such a way that the off-
diagonal effects in the low-order terms are as small as possible. Otherwise, renormalizations
of high-order interactions will generat®n-negligiblesffects to the final results. Thus, it is of
much importance to select an appropriate (local) Boson representation where the off-diagonal
interactions are as small as possible and a further spin-wave analysis can be performed. Usually,
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the (local) Boson representation should be chosen to approach the exact eigenstates as close as
possible. In the conventional HP method, the (local) Boson representation has been chosen as
the single-site eigenstatessﬁ. However, such a choice, although appropriate for isotropic
spin systems, is not for the present anisotropic systems because a proper single-site eigenstate
would be a mixture ofz) with |n£2) . . . rather than a naivie). In order to take account of such
an effect, let us first select an appropriate single-site Hamiltonian to include as many as possible
messages from the total Hamiltonian (3), and then determine a (local) Boson representation
based on diagonalizing such a Hamiltonian.

First consider the exchange term:

i 8j = —(ST)(ST) +(S7)ST +S7(S7)

H(SF = (SEN(ST — (SN + 3(ST'S; +57ST). 4)
Since the second line of the above expression must contribute high-order correlation terms
rather than single-site ones, the contributions to the single-site Hamiltonian can be written as

2§S§/ whereS = (Sf/) should be determined later self-consistently. Thus, all the single-site
terms from equation (3) can be collected as follows:

Hy = —2JZSS? + Dcog 0(S7)? + Dsir? 0(S;)? — h cosd 7 (5)

where Z is the number of nearest neighbours of a given site in a lattice. In principle, the
single-site Hamiltonian should depend on the site. In the present homogeneous system,
however, it is not necessary to consider the site dependence because every site is equivalent. In
inhomogeneous systems such as the magnetic multilayers which will be studied in section 4, we
have to consider the layer dependence since spins in different layers are no longer equivalent.

Terms in the second line of equation (3) are not includedinLater we will show that an
appropriate value of can be chosen to eliminate their influences to the total Hamiltonian. It
should be noted that the single-site Hamiltoniangily serves to determine the (local) Boson
representation and a set of spin-Bose transformations to help us perform further analysis. After
we have found the spin-Bose transformation, we will come back to the total Hamiltonian (3)
to consider all the terms.

2.2. The spin-Bose transformation

We will formulate a new set of spin-Bose transformations, whicfoimally exactin this
subsection. Since the transformation is independent on the site, we omit the site index for
simplicity. Single-site Hamiltonia#/, can be easily diagonalized by the following orthogonal
transformation:

/i) = Y Pun(S.0)|m) (6)

yielding
Hs|ﬁ> = En|ﬁ> (7)

where{|m),m = 0,1, ..., 2S} represent the eigenstates $f defined byS*|m) = (S —
m)lm),m =0,1,...,25},and{|n),n =0, 1, ..., 25} arethe eigenstates Hf. The sequence
of the eigenstatef)} has been arranged ., > E, so that|0) is the ‘ground state’ in a
single site. The transformation matri,, (S, 0), obtained by diagonalizing the Hamiltonian
matrix (n| Hy|m), is certainly dependent ahandd. The matrix forms of the spin operators in
the new representation can be evaluated by

<I71|T|}’l~1) (§7 9) = Z Pmn (E’ 9)P1711111 (§, 9) : (m1|T|m) (8)

mmq
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whereT stands for the operatos§’, S7, etc, and the matrix elements|S* |m), (m1|S% |m)
are very easy to calculate. To study the low-lying spin-wave excitations, we transform the
spin operators into Bose expansionsina which are defined in theiagonalizedsingle-site
representation (rather than the original representation) as

aliyg =vn+1n+ 1) ali)p = v/nln — 1)p 9)
where|i1) g are the Bose states related to the spin stategiag:= |72) (for n < 25). Since
the Boson space is semi-infinite but the spin space is finite, only these gfates < 2S5}
have physical definitions, which will construct the physical Boson space. The remainder states
{|n), n > 28} then construct the unphysical Boson space.

It is the core of the present approach to select the (local) Boson representation as the
diagonalizedrepresentation of the approximate single-site Hamiltonignas shown by
equation (9). The HP transformation [8], on the other hand, defines the Boson representation
as the naive eigenstatesSfff. The Bose operators in the HP transformation are defined by

a'lnyp=vn+1n+1)p  aln)g = /nln — 1. (10)
Compared with the HP method, the merit of our choice is very clear—for example, although
the zero-Boson stat8) in the present definition is still not the exact ground state, it should be
closer to the exact ground state than the zero-Boson |§tatkefined in the HP method. The
same arguments also hold for low-lying exciting states. In fact, later we will show that the
improvement over the conventional spin-wave theory essentially comes from the choice of the
local basis equation (9) rather than (10), since the off-diagonal terms in the total Hamiltonian
based on such a (local) Boson representationrateedmuch smaller than those based on
equation (10). However, the price to pay is that our spin-Bose transformation will be much
more complicated than the HP transformation.

Now let us determine the spin-Bose transformation. Due to the fact that an eigéfstate
of HamiltonianH, of form (5) must be a Iiﬂe\zﬂcombinatio/m% [n+2), |n£4), ..., thenon-
zero matrix elements are thegi|S* |n + 2p + 1), (7|S¥|n + 2p). Generally, the spin-Bose
transformation can be written as

2p+1<28 25—2p—1 )
S+' —0. { Z Z [AI(P aTlal+2p+1 + B[(P)aT[+2p+lal]} e
p=0 =0 (11)
S 0) 1 1 2[§252§p (p) o 1l _1+2 ti+2p 1
SZ’=®~{ cPaa + C,"(a a+”+a+”a)}~(~)
; p=1 =0
where® is the step operator to project out the unphysical states, and is defined by [16]
o= Z Ga'ld (12)
l
in which the coefficients are
Dl - -2)...(0 -2
(D)1 -1Hl—-2)...(—-29) 1>0
G = @) (13)
0 1 <0.
According to [16], the step operat6r has the following properties:
O|i) = |i) n <28
. (14)
®ln) =0 n > 28S.
Thus, for an arbitrary operatdt, we have
H1OTOm) = (i|T|m) n,m <28 (15)

(7|©®T®|m) =0 otherwise
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which means that the step operator can automatically eliminate the contributions of a given
operatorinthe unphysical Boson space. Thus, we only need to consider the matrix contributions
in the physical Boson space.

All the coefficientsA{”, B\"’, "} defined in equation (11) can be determined uniquely
by the matrix elements &f* andS? obtained by equation (8). Taking}o’ as an example, by
equating the matrix elements betwe(élnand|m) (both states are in physical Boson space)
calculated by the two sides of equation (11), we find that:

o 2p+1<285 25-2p—-1 o
(}71|S+ n+1) = (7O - { Z Z [Al(P)a’rlal+2p+l + Bl(p)a‘rl+2p+1al]} . @|n+1)
p=0 =0
2p+1L28 25-2p—-1 o
— <ﬁ| Z Z [Al(l’)aTlal+2p+l + BZ(P)aTl+2p+lal]|n + 1>
=0 =0
25-1 o
— <ﬁ| Z A](O)aTlal+l|n + 1)
=0

Vi +Dinl
_Z oA (16)

in which equations (9), (14) have been used.
Following this method, all the coefficienta”, B”’, C\”’} can beuniquelydetermined
by the following coupled equations:

NCEFTEIN

Z (n—10)!
NCEFTEIY

Z (n—10)!

Zv(”"'zp)n
(n—=D!

VTP T AP = (1S |n+2p +1) n+2p+1 2p+1<2S

NETEPE I BP = (n ¥ 2p + 18T ) n+2p+1 2p+1<28 (17)

" = (157 |n +2p) n+2p 2p<2S.

Equation (17) can be solved step by step. For example, in the cage=0f0,n = O,

we haveA = (0|s*|1), B = (15*(0), andCy® = (0/5¥|0). Some lowest-order
coefﬁments are listed in table 1. The larggris, the larger the number of coefficients.

In a definite-spin case, the number of coefficients is always finite. For example, only
AL, AP, B, BO, ¢, c?, c?, ¢ are needed in the case o= 1.

The validity of our spin-Bose transformation equation (11) is ensured by the fact that
the Bose expansion hagactlythe same matrix elements as the original spin operator in the
physicalBoson space, and hasromatrix elements in thenphysicaBoson space. The Bose
expansions of the spin operators certainly satisfy all the commutation rules of the angular
momentum

(S j]—zsz y

(18)
[S,Z » 9 ] = :I:Sljsl:t

because the transformatid?),, is orthogonal.
Inserting (12) into (11), we can further expand the transformations to infinite Bose series
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Table 1. Coefficients of the new Bose expansion up to the fourth-order te{r!yﬁg).}} and{K,(”)}
can be obtained through replacifig by S¢'s*' in the expressions dfA\”’} and{B\”}. (E\"’}

and{F,”} can be obtained through replaciig by (5¢)? and(s*)2 in the expressions dtC;”},
respectively. The site indexhas been omitted.

(p) () (p)
p I AL B’ c,’
0 0 (057 (115*'10) (015710)
0 1 &2 _svL) <2‘Sf‘l (1s*10) (115911 - (015710)
0 2 @SB _ASR .y yesD) GSTR @S 1digY0) 32sTI2) — @S D + 3015710)
1 0 @S}Wé) @S}/\f» <|f|>
6 6 2
11 AsTd _ @sTE @s' ) _ @st o) A3 _ @712
Nz /6 V24 G /6 V2
in normal order:
2p+1<2S
Z Z[A;l’)aﬂal+2p+l + BI(P)aTI+2p+1al]
2p<2S o (19)

Z C(O)aTlal + Z Zc(p)(aTlaHZp +a'”+2pa ).

=1
It has been proved in [16] that the projection operator has no influence on the coefficients of
those Boson terms in physical space which have been determined in equation (17). To avoid the
unnecessary introduction of too many symbols, we have used the sameiesy”, €'}
etc) in the above expansions to denote Wimle set of coefficients for the infinite series
including those for unphysical Boson terms which are not determined by equation (17).
Let us now take th& = 1 case as an example. Equations (11) can be rewritten as

s =0- [Aéo)a + A(lo)cfra2 + B(()O)aT + B{O)awa] e

_ [A(O)a +A(0)a’ra2] 0+0. [B(O)aT+B(0)aT2a]
¢ —@. [C(()O) +C(O)a‘ra +C§°)aT2 2, C(l)a‘r2+C(()1) 2.0

_ [C((,O) + Cio)a’ra + C§0>atzaz] O+, C(()l)afz+ C(()1>a2 0.
Every term in equation (20) can be expanded to infinite Bose series arranged in normal order.
For instance,

(20)

ALa-© = Z G1AQaa"a! = Z G1AQala!t + 1014
] 7
=Y (G + (I + DGu)Aa"d"™, (21)
]

After a careful calculation, the final form of the coefficients are found to be

AQ =[G+ (1 + DGg] AY +[G1_1 + 2G) + (1 + 1)IG 4] AL

B =[G+ (I + 1G] BL +[G,_1 +2G; + (I + )IG41] B

c,“’) GICL +[1G; + G11]C2 +[Gyp + 21 — 1)G,_1 +1(1 - 1)G]CY
CV =[G +20 +1)Gpa+ (L + DI +2Gro] C”

As we have stated, the step operator does not change the coefficients of those physical Boson

terms—one may check this point by examining the casds=ef0, 1. It can be seen from
equation (22) that the high-order terms are deriveijuelyfrom the low-order terms which

(22)
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are determined by equation (17). Actually, the high-order terms have no matrix contributions
in the physical Boson space. They only serve to cancel the matrix contribution of the low-order
terms in the unphysical Boson space.
Similarly, ¢ 5, (§7)% and(5*")? can be expanded into Bose series:
2p+1<2S oo

Sz’Sx' — Z Z[Jl([?)a'l'/al+2p+l + K[(P)aT/+2p+lal]

p=0 [=0
0 2p<2S oo
(SZ )2 — Z El(o)aﬂal + Z Z El(p) (aTlal+2]7 + aTl+2[)a1) (23)
=0 p=1 1=0
00 2p<2S oo
(S)( )2 — Z F'l(o)aTlal + Z Z F}(P)(aTlaHZp +aTl+2pal).
=0 p=1 1=0

Basically, the coefficientdJ\”’, k", E{”’, F/"’} can be determined by the coefficients
{A”, B” ¢} uniquely. However, it is more efficient to derive them directly from the
corresponding matrix elements calculated from equation (8), following the method described
above. Actually, in equation (17) and table 1, one may just subsSitutey ¥ $*' to determine
J\” andK”’ and substitutes® by (5¥)2 and($*)? to determineE,”’ and F,”’, respectively.

Thus, we have formulated a new spin-Bose transformation whidorisally exact
and have considered the SSM effect explicitly, rather than the conventional HP spin-Bose
transformation [8] and others. Although the expressions seem rather complicated, in practical
cases, one rarely applies the infinite series but rather takes only the lowest several order terms
(say, up to harmonic terms) to catch the main physicst. In the remainding parts of this paper,
we will present some applications of our method under the harmonic approximation, and show
that the method is applicable to some problems where the conventional methods fail under the
harmonic approximation.

2.3. The spin-wave excitations under the harmonic approximation

Since we have obtained a set of spin-Bose transformation based on the Boson representation
defined by the single-site Hamiltonian, now we go back to the total Hamiltonian (3) to consider
all the other terms. Applying our new Bose transformation (19)—(23) to Hamiltonian (3) and
then applying a Fourier transformation, under the harmonic approximation, we find that

H = Ho(S,0) + Hy(S,0) + Y P(k)ajar+ Y Q(k)(afa_ +ara_) +- - (24)
k k

where

Ho= N(—JZC?+ D cog 0EY’ + DS F® — hcosaCy) (25)

Hy =Y [-Dsin0 cosd (K + J*) + 3hsing (A7 + B (ay, +a_) (26)

k

Pk) =272 — 1Z[(AL)? + (B®)y), + Dcof 0EL + Dsint 0¥
—hcosoC” (27)

0k) = —JZAL By +[-272CLCP + Dcog 0EY + Dsi? 0 F® — hcostC].

(28)

Here,y, is defined as
ve = (1/2)) e*? (29)
4

T Effects of higher-order terms in the infinite series have been considered by some authors, see [14,16].
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in which the summation runs over nearest neighbours.

According to the arguments leading to (5), we understand the paraghistesed to take
account of appropriate contributions from the exchange term to the single-site representation.
In the zero-temperature case which is considered here, according to equation (11), it is thus
appropriate to use the equation

S=(5)=Cy"(5.0) (30)

to determine the parametsrself-consistently, WhereSf/) is the local Boson ground state
expectation oSl?/. Onthe other hand,is chosen to cancel the non-harmonic part of interaction:

Hy(0,S), that is
—Dsing cosd[J0 (S, 0) + K3 (S, )] + 3hsing[ A (S, 6) + B (S, 6)] = 0. (31)

In fact, the above terms just come from the second line of the total Hamiltonian (3). Although
such terms are not included in the approximate single-site Hamiltonian (5) to determine
the (local) Boson representation, their influences upon the total Hamiltonian are indeed
eliminated by choosing an appropriate value of the canting ahgieeast under the harmonic
approximation adopted here.

It should be emphasized that since all of the coefficients 4i\&, B"’, C\”, etc) are
related to the matrix elements (see equation (17) and table 1) which are the functions of the two
parameters andd according to equation (8), all of the coefficients presented in equations (24)—
(28) (i.e.Ago), B((,O) etc) are then the implicit functions of the two parameteendd. Thus,
equations (30), (31) are two nonlinearly coupled equations serving to determine these two
parameters. Once equations (30), (31) are solved, every parameter appearing in Hamiltonian
(24) has a fixed value. We can diagonalize the Hamiltonian with the help of the Bogolyubov
transformation and obtain

H = Hj+ ) E(k)ajoy + - (32
k

where the ground state enerfl§} and the spin-wave dispersion relatisiik) are defined as

Hy=Ho+ 3y [=P(k) +v/P(R)? = 40(07] (33)
k
E(k) = VP (k) — 40 (k)2. (34)

Then all the physical properties can be calculated readily.
Let us now discuss the physical significance of our choice equation (30). Applying the
spin-Bose transformation to the single-site Hamiltonian (5), we find that

Hy = -2JZ5CY + Dcof0EL + Dsin? 0 F® — hcosoC
+[—27Z5C° + Dcog 0 EL + Dsin? 0 F° — hcos9CPa'a
+[-2JZSCP + Do OES’ + Dsit 0 Fy — hcosdCy (@™ +a?) +-- -
(35)

Sincea, a' are defined in the diagonalized representatiot/p{see equation (9)), the off-
diagonal interactions in the above equation should be zero, which means that

—2J7ZSCY + Dco0ESY + Dsir?oF" — hcosoc? = 0. (36)
Substituting equation (30) into the above equation yields
—2J2¢c0Cc’ + Dcog ESY + Dsin? 0 FS® — hcosoc = 0. (37)
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When comparing equation (37) with the off-diagonal teprtk) defined in equation (28), the
physical meaning of our choice equation (30) is very clear—up to second order, all the single-
site off-diagonal interactions in the Hamiltonian (collected in the bracket in equation (28), of
the type &2 + a')) have been cancelled. This is the direct consequence of the local Boson
representation defined by (9). Instead, there appears another off-diagonalt&ai” B y;,

in the expression o (k). But the off-diagonal effect of this term is much less serious than
that of the single-site terms. Those single-site off-diagonal terms are actually responsible for
the failure of the conventional HP method.

In fact, the paramete§ is used to indicate the strength of the SSM effect. The larger
the deviation ofS from S (i.e. AS = § — S) is, the stronger the SSM effect will be. In the
isotropic case, i.eD = 0, according to equations (5), (30), itis easy to find that S because
the local Boson ground state expectation valuéfbfs just the absolute value &f. In such
a case, the SSM effect disappears. This is why the conventional HP method works well for
the isotropic spin systems. However, in the presence of an anisotkdpwill be non-zero
caused by the off-diagonal interactionshf. In such cases, the SSM effect is never trivial.
The conventional HP method, which fails to consider such an effect, will encounter problems
in some cases.

The parametet still possesses its classical meaning—the canting angle of the spin vector.
According to equation (32), the approximate ground state is defined lG§) = 0. It is easy
to check that

(GIS’IG)=0  (GIS]'IG) = 0. (38)

Thus, we have chosehin such a way that the spin will point along the loeadxis, without
expectation values along other directions.

The state described by the parametgmndé can then be understood as follows. The
spins still point along the local axis defined by, however, the ground staf@) is no longer
that for the isotropic Heisenberg ferromagnet (i.e. the state with the IafﬁeSXpectation
value), but rather a mixture of the isotropic ground st@jeand exciting statef2), |4) .. ..

The mixing effect is dependent on the anisotropy and the canting éngtel is described by
the deviationAS.

So far, we have outlined the basic formalism of the new approach based on a homogeneous
easy-plane model in which only one set of paramet§rg) are necessary. The method is
certainly not limited in such a special case. Actually, for any micromagnetic models with
single-ion anisotropy, one just applies the LC transformation, then selects an appropriate
single-site Hamiltonian to determine the local Boson representation, and finally performs the
spin-wave analysis based on such a local Boson representation. It is a rather routine job to
apply the same ideas to study the easy-axis model

H=-J 8-8;=D)Y (S§)?—h)_S (39)
@) i i
and other more complicated systems. After making detailed comparisons with existing theories

in the next section, we will study an inhomogeneous system—the magnetic multilayers in
section 4.

3. Comparison with existing theories

3.1. The HP method

First, let us compare our method with the conventional HP method which is the most
widely adopted in the literature to deal with such problems [2—7]. Instead of our spin-Bose
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transformation (11), the conventional method applies the naive HP transformation [8]

v to T

Sf =8 —a;q
to Hamiltonian (3) to study the spin waves.

Subsequently, we will show that the conventional HP method has chosen a (local) Boson
representation based on such a single-site Hamiltonian in which the off-diagonal interactions
are neglected. Actually, if we discard the off-diagonal terms in the single-site Hamiltonian
(5), the transformation matriR,,, becomes diagonal:

Pon = 8pun- (41)

According to equation (8) and table 1, one may obtain
A =V2s, ... AP =0 p#0
Bl(p) -0
=8 cP=-1... ¢"=0 p#0
10 =8v28/2, ... JP =0 p#0

(0 (p) (42)
K = (S -1v2s8/2, ... KPP =0 p#0
EY = s? E® =1-25, ... EP”=0  p#0

F¥=5/2 F9=s5-1/2
FP = /2525 -1)/4, ... F” =0 p#0,1.

By putting the coefficients defined in equation (42) into equations (11), we find the resulting
transformation

S =2Sa; + - -

Sfle—aiTai+---
is in fact the same as the conventional HP transformation (40) under the harmonic
approximationt.

According to equation (42), the solution of equation (30) is fust S and equation (31)
now becomes

(43)

h
cost = DES—D" (44)
Substituting equations (44), (42) into (27), (28), we find that
PP (k) = 2JSZ(1 — yi) + 3D(2S — D) sinf o (45)
0" (k) = 1Dsi?0/25(25 - 1). (46)

Itis very easy to check that the magnon excitation energies of the easy-plane model, calculated
by

EP (k) = V/(PHP (K))2 — 4(QHP (k)2 (47)

are always imaginary whekh — 0. One may understand that this problem is caused
by neglecting completely the off-diagonal interactions when choosing the (local) Boson
representation, so that the off-diagonal interactiof$ | (k) in (46)] are so strong that a
harmonic approximation fails.

T It should be noted that the conventional HP method (40) fails to cancel the contributions of the Bose expansions
in the unphysical Boson space. As the result, high-order terms in HP transformation may be different from our
transformation.
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Figure 1. Magnon dispersion relation8 (k) ~ kya Figure 2. Magnon excitation gapa (k) as functions

(ky = k; = 0) calculated by the present methodof the external field calculated by the present method
(solid curves) and the conventional HP method (dashe@olid curves) and the conventional HP method (dashed
curves) for easy-plane model with anisotropy parametaurves) for easy-axis models with anisotropy parameter
D/JZ = 0.2 under zero external field (in this case,D/JZ = 0.02 in spin-1,-3/2,-2 cases, respectively.

0 = m/2) in spin-1,-3/2,-2,-5/2 cases, respectively.

Some examples are helpful for comparison. Figure 1 presents the dispersion relations
calculated by the present method (solid curve) and the conventional HP method (dashed curve)
for the easy-plane model with a simple cubic lattice at zero external field. The imaginary
excitation energies of those modes neafthmint clearly show the failure of the conventional
HP method, while such a problem has been overcome by the present method.

The magnon excitation gags(k) of an easy-axis model described by Hamiltonian (39)
with a simple cubic lattice calculated by the two methods have been plotted together in figure 2
with respect to the external field. It is found that the conventional HP method is good for the
easy-axis model in many cases. However, in some cases, i.e., in the viciiti2S — 1) D
when the spin is forced just parallel to the external field, the conventional HP method fails.
We see that our method always gives a positive gap to the magnon dispersion relation.

Figure 3 presents the two parameteérand S as the functions of the external figidfor
both the easy-plane and the easy-axis model. Itis understood that the valueSadescribes
the SSM effect—the larger this value, the more drastic the SSM effect. From figure 3, we find
that, for the easy-plane model, the SSM effect is very significant Whgro0, and disappears
whené = 0; while for the easy-axis model, the SSM effect is most significant vhigrst
approaches zero. Comparing figure 3 with figures 1 and 2, it is not difficult to understand that
the failure of the conventional HP method is indeed caused by neglecting the SSM effect.

3.2. The MME method

Let us compare our new method with the MME method in this section [9-11]. In the MME
method, wherk = 0, the spin-Bose transformation has been derived which is correct to the
lowest order ind = D/2J Z for the easy-plane model [10, 11]. We will show that under the
same conditions, our present method will give the same results as the MME method.

Whenh = 0, there is no competition between the anisotropy and the external field, so
that the solution of equation (31) must®e- = /2—in another words, the spins have to lie in
the easy plane (they plane). Then, the single-site Hamiltonian (5) is written as

H, =2JZ[-SS7 +d(S7)?]. (48)
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Figure 3. 6 andS as the functions of the external figidor
1-495(5) 0 02 0a 06 (®  an easy-plane spin-3/2 model (solid curves) and an easy-
: : : axis spin-3/2 model (dashed curves) where the anisotropy
h/JZ parameters ar®/J Z = 0.2 in the two models.

Treatinga,’(S;")2 as a perturbation, we find the proper eigenstates of Hamiltonian (48) should be

Y= = 43(825 Da12) + ota?

0) =10) —
i) =y — Yo _8%)(23 —2 413) + o(d?) (49)
5 VST, VSRS

| 8s 8s
According to table 1 and the above equation, we find that

AD = \/— S+ O(d2
BY = (

cy =58+ o(dz)
C” = —1+0od?

yeees o 2S(i;9 ) d +o(d?.

d +0(d?)
(50)

1 _
Cy =

Correct to the first order id, the solution of equation (30) is simply= S. PuttingS = §
into the above equation, we find that the resulting transformatierastlythe same as that in
the MME method [10].

However, we have to emphasis here that the MME spin-Bose expansion [10] is only
valid for the smalld case, and more importantly, in the casehot= 0. If & # 0, we
find from equations (30) and (31) that the two paramegessid S cannot be determined
independently. These two parameters must influence each other so that the final solution
should be determined self-consistently rather than perturbatively. Clearly, the MME method
cannot be applied naively to study the quantum spin systems in general spin configurations,
but the present approach has included all the high-order contributieharid can be applied

to general spin configurations.
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3.3. The CA method

Finally, we compare out method with the CA method which is developed for spin-1 systems
[12—14]. We will show that, in the case 8f= 1, our present method ejuivalentto the CA
method.
WhensS = 1, the eigenstates of Hamiltonian (5) must be
10) = cos¢|0) — sing|2)
D =11 (51)
|2) = sing|0) + cosg|2)
whereg needs to be determined. According to the above equation and table 1, we find that

AP = V2 cosp
By = —v/2sing

c — cos 2 9 = _cos2 cY = V2 sing cosp
E=1 EP=-1 EP=0

1 . 1 . 1
F¥ = 51— sin2p) Fo = 51 +sin2p) F’ = —cos2

2.2

(52)

) 1 .
Jo = 72(cos¢ + sing)

Ky =0.
¢ is selected to cancel the off-diagonal elements of the single-site Hamiltonian (5) in the
representatiofD), |1), |2). The only diagonal term i€)| H;|2), so that we have the equation

(0|H,|2) = (2|H,|0) = —2J Z5~/2 sing cosg + D sir? 6—1_ cos 2

22
—h cosd~/2 sing cosg = 0 (53)
to fix ¢. According to (52), equations (30), (31) now become
S =cos2 (54)
—Dsiné(cose + sing) + h sinf(cosg — sing) = 0. (55)

Thus, we have three equations (53)—(55) to fix three paramgtérand¢. Putting (54) into
(53), we then have

. D . h .
—JZcosZpsm2¢+Zsmzecos2z>—Ecos@stq&:O. (56)

When comparing equations (56), (55) with the criterion in the CA method for the same
model (equations (19), (20) in[13]), one may find that they are irefquivalent The parameter
¢ is just another variation parameter—the characteristic angle, in the CA method [12-14].
Substituting equation (52) into (24)—(28), itis rather easy to check that the resulting expressions
areexactlythe same as those presented in the CA method [13]. Thus, we have shown that
in the case of§ = 1, the present method is equivalent to the CA method. This result is not
surprising, because the basic ideas of both methods are the same—to try to find out the best
local Boson representations. However, the CA method is only applicable to spin-1 systems
whereas the present method can be applied to arbitrary spin-number cases.

4. Applications in magnetic multilayers

In principle, the method described in section 2 can be applied to any quantum spin system
with single-ion anisotropy. Here, we apply the method to study one kind of inhomogeneous
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system—the magnetic multilayer system. Our results may reveal that the remarkable merit of
the new method is that it can clarify some unphysical instabilities which are predicted by the
conventional HP method.

Generally, a magnetic multilayer can be well described by the following micromagnetic
model:

H=Y"Y 5ywSu@ - Su@)+ Y DSt P —h Y Si(r)  (57)
wherem, m’ label the layer and, »’ are the lattice sites within the plane. The anisotropic
axes{z%} can be different from layer to layer, and the anisotr¢py,} can be of easy-plane
or easy-axis type. For simplicity, we assume #idt are in the xz plane angf, - z = cosn,,.

As we have already mentioned, in magnetic multilayers, the spins in different layers are
no longer equivalent. We have to adopt different paramdtgrss,,} to describe spins in
different layers. After a LC transformation similar to (2) but with anglgdifferent from
layer to layer, we find the following single-site Hamiltonian for each layer:

H,; = - |:21mm ng + Z 21mm’ CO&@m - em’)gm’ +h Cosemi| S,im (T)

+D,, COS (B — N[ S5 (1)]2 + Dy SINP (G — 0[S ()]

m=12,.... (58)
The spin-Bose transformation for theh layer is determined based on its own Hamiltonian
H;. Thus, we have

2p+1<L2S,, oo
+ (p) i 1+2p+1 (p) ti+2p+1 l
Sm(r) = Z Z[Al,mam (T)am ’ (r)+Bl,mam ’ (T)am(r)]
p=0 [=0

00 2p<2S,, oo (59)
S () =Y Cnana, @+ 37 3 Clllan (ay® () + ' (r)a,, ()]
=0 p=1 1=0

where the parameterf;”), B”), C,”} are determined following the same procedures

described in section 2, with single-site Hamiltonian (5) in section 2 replacédf by
By using the transformation (59), we expand the Hamiltonian into the following Bose
series under the harmonic approximation:

H = HO({Em}v {Gm}) + Hl({gm}’ {em})
3 P (R)a), (k) (K) + Quuar (K[}, (R)ay, ()

m,m'k

+ay,, (k)am’(_k)]} +--- (60)
where
Ho =Y {~LunZ[C»]* + Dy COS (B — 1) Egyp, + Doy SINP (O — 1) Foo — 1 COSH,, C)

m

— " L €O — O )Cln Cons} X N (61)
Hy =Y 1) L SiNO — 0u)Cln (A, + BE) — Dy SNy — 1) COKOyy — 1)
X(Jg0 + Ko0) + 3hsing,, (AY), + BOa), (k) + an (—k)] (62)

and
Pun(k) = —2Lun ZCO,C0 — Lum ZIAD)? + (B Vi + Dy €0F 0y — 1) EL)

1m 1m
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+D,, SIN? (B, — 1) Fro)y — h €086, C1),

2" L €OK6, — 0,)CR, CO, (63)

0 0 0
Qmm (k) = _ImmA((),,)ﬂB(gJ)nZVk + {_ZImmZC((),nLC(()iLy)n —h COS@mC(()’l,L
+Dm COSZ(QW - Tlm)Eé,l,),, + Dm Slnz(em - 77771)F(§’1n)1

- Z ZImm’ Coaem - Qm')C(()OI:VC(()lY)n (64)
Pouny (k) = =5 Luw[1 + COK6,, — 6] - (Ag, A + Bo Boy)

+1 L [1 — COS6, — 6,)] - (AS) B, + AL BO) (65)
Qi (k) = — 2 Ly [1 + COLO, — 6,)] - (AL, BS), + AL BO))

+1 Ly [1 — OO, — 6,1 - (A, AT + BS ), B). (66)

Following section 2,{S,} should be determined self-consistently by the following
equations:

S, = (01S10) = ), m=12,... (67)
and the canting angl€s,,} are obtained by lettingl; = 0, i.e.,
D" Ly SO — Ou) Clony (A, + Bgon) = Do Sy — 1) COLOp — 1) (S0 + K0

+1nsin6, (AL, + BY),) = 0. (68)

Since all the coefficients shown in equations (67), (68) (i‘g’,?n Afffn, Bé?,)n, etc) are the

implicit functions of{6,,} and{S,.}, {6,,} and{S,,} can be determined by solving equations (67)
and (68) self-consistently. Putting the solutions into Hamiltonian (60), we have

H = Hj+ Y En(k)a), (k) (k) +- - (69)
m,k

where the spin-wave excitations,, (k) are calculated following [5]. All the physically
interesting properties can be examined.

The first example we study is a six-layer sandwich-type magnetic multilayer, where the
first two layers and the last two layers have easy-plane anisotropies while the middle two layers
have perpendicular easy-axis anisotropies. The lattice structure is assumed to be simple cubic-
like, and the structural parameters have been specified in the caption of figure 4t. For such
a system, following the method outlined in [6], two non-trivial spin configurations (denoted
by configurations &) and )) are found to exist at zero external field—see the caption of
figure 4. If we are using the conventional HP method, we find that both spin configurations
areunstablé—see the spin-wave spectra (dashed curves) depicted in figueant{ ). In
fact, such problems exist generally in magnetic multilayers with easy-plane anisotropies—we
have examined many other systems with easy-plane anisotropy and have found that soft modes
exist forany canted spin configurations.

However, is it true that the canted spin configurationsadreinstable in such kinds of
systems?

Using the present method to recalculate the same system, we find that spin configbjation (
is really unstable; however, spin configuratiahi§ stable. The instability of spin configuration
(a) is caused by missing the SSM effect, not a physical one.

T It should be noted that in this paper, in order to show just the main physical picture, the anisotropy parameters are
selected to be somewhat larger than practical values. Actually, for small anisotropy, such an effect still exists.
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Figure 4. Magnon dispersion relatiorss,, (k) ~ kya (k, = 0) (lowestfour modes) calculated by

the present method (solid curves) and the conventional HP method (dashed curves) for a six-layer
magnetic multilayer with model parametet; ,, = 1, Iym+1 = Inm—1 = 0.1;m = 1,2,5,6:

D, =05S, =1,n, =0,m = 3,4 D, = -01, S, = 3/2yp,, = 0; h = 0 at spin
configuration ): 61 = 1.50,6, = 1.33,603 = 0.81,64 = 0.81, 65 = 1.33, 66 = 1.50; and spin
configuration ): 61 = —1.45,6, = —1.16, 03 = —0.21,04 = 0.21, 65 = 1.16, 5 = 1.45.
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Figure 5. Magnon excitation gap\ (k) calculated by the present method (solid curve) and the
conventional HP method (dashed curve) as the function of the external field for a six-layer magnetic
multilayer with model parameters;, ,, = 1, Iy m+1 = Iym—1 = 0.5;m = 1,2: D,, = —0.2,
Snw=1ny=7n/2,m=3,4,56: D, =-02,8, =3/2,n, =0.

We will investigate another example to show the usefulness of our new method. Let
us consider a six-layer system in which the first two layers have magnetic easy axes along
the x direction in the plane and the remaining four layers have perpendicular easy axes. By
using both the conventional HP method and the present new one, we have calculated the
magnon excitation gaps(z) as functions of the external field applied along thedirection,
and compared the results in figure 5. According to the quantum theory for coercive fields
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established in [5], we know that the field at which the magnon excitation gap approaches zero
is simply the coercive field, since at this point the present spin state is no longer stable so
that a spin reversal transition should take place. From figure 5, it is very interesting to find that
the coercive field:© ~ 0.5 calculated by the conventional HP method is considerably smaller
than that calculated by the new methigict~ 1.7. Once morek¢ corresponds to an unphysical
instability caused by missing the SSM effect, which has been removed by the new method.
In principle, the method established here is applicable to any micromagnetic models with
single-ion anisotropy—one just substitutes the conventional HP transformation by our spin-
Bose transformation (11). Although some physical properties (such as the ground state energy,
the magnetization) may not be modified very much, the low-lying spin-wave excitations,
however, can be improved considerably by our new method. The latter may be important in
determining the stability of an arbitrary spin configuration in a complicated magnetic system.

5. Conclusions

To summarize, we have established a unified spin-wave approach for quantum spin systems
with single-ion anisotropies, which can be applied to remedy the problems encountered by the
conventional HP method, and is applicable to the arbitrary spin-number case and general spin
configurations. The key element of our method is a new spin-Bose transformation which is quite
different with the conventional HP transformation and other spin-Bose transformations. In the
new spin-Bose transformation, the single-site spin-states mixing effect has been considered
self-consistently, so that the largest part of off-diagonal terms in the Hamiltonian have been
cancelled by this transformation, while it is actually those terms which are responsible for the
failure of the conventional HP method.

The present method has been compared with other existing theories. Treating the
anisotropy in a first-order approximation and in the case of zero external field, the present
method gives the same results as the MME method which is valid in such a case. For spin-1
systems, the present method recovers the results of the CA method which is developed only
for spin-1 systems.

The method has also been applied to study some magnetic multilayer systems; the results
show that it is helpful to clarify the unphysical instability predicted by the conventional HP
method.
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